

Systemd-Service

Simple API to automate the creation of custom daemons for GNU/Linux.

[image: GitHub top language] [image: PyPI - License] [image: PyPI] [image: PyPI - Status] [image: PyPI - Python Version] [image: GitHub last commit] [image: CodeFactor Grade] [image: Documentation Status] [https://systemd-service.readthedocs.io/en/latest/?badge=latest]

A daemon is a service process that runs in the background and supervises
the system or provides functionality to other processes. Traditionally,
daemons are implemented following a scheme originating in SysV Unix.
Modern daemons should follow a simpler yet more powerful scheme, as
implemented by systemd.

Systemd-Service is a Python module to automate the creation of
daemons under GNU/Linux environments.

Install

pip install -U systemd-service

Handle daemons

from systemd_service import Service

daemon = Service("stream_rpyc")

daemon.stop() # Start (activate) the unit.
daemon.start() # Stop (deactivate) the unit.
daemon.reload() # Reload the unit.
daemon.restart() # Start or restart the unit.

daemon.enable() # Enable the unit.
daemon.disable() # Disable the unit.

daemon.remove() # Remove the file unit.

This commands are uquivalent to the systemctl calls, for example run
in terminal the folowing command:

$ systemctl enable stream_rpyc

Can be running inside a Python environment with using
systemd_service

from systemd_service import Service

daemon = Service("stream_rpyc")
daemon.enable()

Creating services

Similar to the previous scripts, the services can be created using
systemd_service:

daemon = Service("stream_rpyc")
daemon.create_service()

If the service must be initialized after other service

daemon = Service("stream_rpyc")
daemon.create_service(after='ntpd')

Creating timers

Defines a timer relative to when the machine was booted up:

daemon = Service("stream_rpyc")
daemon.create_timer(on_boot_sec=15)

Example

This module is useful when is combined with package scripts declaration
in setup.py file:

setup.py

scripts=[
 "cmd/stream_rpyc",
]

The script could looks like:

#!/usr/bin/env python

import sys

if sys.argv[-1] == "systemd":
 from systemd_service import Service
 daemon = Service("stream_rpyc")
 daemon.create_timer(on_boot_sec=10, after='network.target kafka.service')

else:
 from my_module.submodule import my_service
 print("Run 'stream_rpyc systemd' as superuser to create the daemon.")
 my_service()

Then the command can be called as a simple script but with the
systemd argument the command will turn into a service.

$ stream_rpyc
Command executed normally

$ stream_rpyc systemd
Service created

Navigation

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 systemd_service	

Index

 M
 | S

M

 	
 	
 module

 	systemd_service

S

 	
 	
 systemd_service

 	module

systemd_service package

Simplified BSD License

Copyright (c) 2020, GCPDS All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Systemd-Service

Simple API to automate the creation of custom daemons for GNU/Linux.

[image: GitHub top language] [image: PyPI - License] [image: PyPI] [image: PyPI - Status] [image: PyPI - Python Version] [image: GitHub last commit] [image: CodeFactor Grade] [image: Documentation Status] [https://systemd-service.readthedocs.io/en/latest/?badge=latest]

A daemon is a service process that runs in the background and supervises
the system or provides functionality to other processes. Traditionally,
daemons are implemented following a scheme originating in SysV Unix.
Modern daemons should follow a simpler yet more powerful scheme, as
implemented by systemd.

Systemd-Service is a Python module to automate the creation of
daemons under GNU/Linux environments.

Install

pip install -U systemd-service

Handle daemons

from systemd_service import Service

daemon = Service("stream_rpyc")

daemon.stop() # Start (activate) the unit.
daemon.start() # Stop (deactivate) the unit.
daemon.reload() # Reload the unit.
daemon.restart() # Start or restart the unit.

daemon.enable() # Enable the unit.
daemon.disable() # Disable the unit.

daemon.remove() # Remove the file unit.

This commands are uquivalent to the systemctl calls, for example run
in terminal the folowing command:

$ systemctl enable stream_rpyc

Can be running inside a Python environment with using
systemd_service

from systemd_service import Service

daemon = Service("stream_rpyc")
daemon.enable()

Creating services

Similar to the previous scripts, the services can be created using
systemd_service:

daemon = Service("stream_rpyc")
daemon.create_service()

If the service must be initialized after other service

daemon = Service("stream_rpyc")
daemon.create_service(after='ntpd')

Creating timers

Defines a timer relative to when the machine was booted up:

daemon = Service("stream_rpyc")
daemon.create_timer(on_boot_sec=15)

Example

This module is useful when is combined with package scripts declaration
in setup.py file:

setup.py

scripts=[
 "cmd/stream_rpyc",
]

The script could looks like:

#!/usr/bin/env python

import sys

if sys.argv[-1] == "systemd":
 from systemd_service import Service
 daemon = Service("stream_rpyc")
 daemon.create_timer(on_boot_sec=10, after='network.target kafka.service')

else:
 from my_module.submodule import my_service
 print("Run 'stream_rpyc systemd' as superuser to create the daemon.")
 my_service()

Then the command can be called as a simple script but with the
systemd argument the command will turn into a service.

$ stream_rpyc
Command executed normally

$ stream_rpyc systemd
Service created

 _static/file.png

_static/favico.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Systemd-Service

